Appearance
question:上面的代码中loss_rank处理的对象是什么?
answer:在第二段代码中的 `loss_rank` 函数处理的主要对象是通过模型输出的注意力图(Attention Maps)。这个函数的目的是计算一个损失,这个损失关注于注意力图在某种程度上的排序或分布特性。这在对象跟踪或检测的上下文中可能特别重要,因为注意力图可以表示模型对输入数据中的某些区域的关注程度,这些区域很可能包含重要的特征或对象。 更具体地说,`loss_rank` 函数首先对注意力图进行处理和分解: - 通过某种形式的预处理(将注意力图根据不同的区域拆分、重组并平均),得到处理后的注意力图(`attn`)。 - 对这经过处理的注意力图进行奇异值分解(SVD),提取奇异值(`s`)。 - 计算奇异值与1的偏差(`s01`),并以此来计算最终的损失值,这可能反映了注意力图的某种期望分布与实际输出之间的差异。 这样计算得到的损失反映了注意力图的分布特性,可能与模型对不同区域关注的均匀性或集中性有关。通过将这个损失纳入总损失函数,模型在训练过程中会被激励去调整其输出的注意力图,以满足某些排名或分布上的优化目标,从而可能提升对象检测或跟踪的性能。 此外,`loss_rank` 通过这种方式提供了一种新的角度或维度来理解和优化模型的行为,特别是在处理复杂场景或学习高级特征表示时,这种对注意力图的直接操作和优化可能特别有意义。
question:对比代码:③ import math import logging from functools import partial from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import to_2tuple from lib.models.layers.patch_embed import PatchEmbed, PatchEmbed_event, xcorr_depthwise from .utils import combine_tokens, recover_tokens from .vit import VisionTransformer from ..layers.attn_blocks import CEBlock import random import numpy as np _logger = logging.getLogger(__name__) class VisionTransformerCE(VisionTransformer): """ Vision Transformer with candidate elimination (CE) module A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, act_layer=None, weight_init='', ce_loc=None, ce_keep_ratio=None): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set distilled (bool): model includes a distillation token and head as in DeiT models drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate embed_layer (nn.Module): patch embedding layer norm_layer: (nn.Module): normalization layer weight_init: (str): weight init scheme """ # super().__init__() super().__init__() if isinstance(img_size, tuple): self.img_size = img_size else: self.img_size = to_2tuple(img_size) self.patch_size = patch_size self.in_chans = in_chans self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 2 if distilled else 1 norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) self.pos_embed_event = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=4, stride=4) # self.pos_embed_event = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=4, stride=4) # self.pos_embed_event_z = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=3, stride=1) # attn = CrossAttn(768, 4, 3072, 0.1, 'relu') # self.cross_attn = Iter_attn(attn, 2) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule blocks = [] ce_index = 0 self.ce_loc = ce_loc for i in range(depth): ce_keep_ratio_i = 1.0 if ce_loc is not None and i in ce_loc: ce_keep_ratio_i = ce_keep_ratio[ce_index] ce_index += 1 blocks.append( CEBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, keep_ratio_search=ce_keep_ratio_i) ) self.blocks = nn.Sequential(*blocks) self.norm = norm_layer(embed_dim) self.init_weights(weight_init) def masking_fea(self,z, event_z, x, event_x, ratio=0.8 ): b,nz,c = z.shape b,nez,c = event_z.shape b,nx,c = x.shape b,nex,c = event_x.shape assert(nz == nez) assert(nx == nex) lenz_out = int(nz*ratio) lenx_out = int(nx*ratio) mask_nz = torch.rand(b,nz).float() mask_ez = torch.rand(b,nez).float() mask_nx = torch.rand(b,nx).float() mask_ex = torch.rand(b,nex).float() mask_nz = mask_nz>0.4 mask_ez = mask_ez>0.4 mask_ez = ~mask_nz + mask_ez mask_nz_idx = mask_nz.float().sort(1,descending=True)[-1].to(device = z.device) mask_ez_idx = mask_ez.float().sort(1,descending=True)[-1].to(device = z.device) mask_nx = mask_nx>0.4 mask_ex = mask_ex>0.4 mask_ex = ~mask_nx + mask_ex mask_nx_idx = mask_nx.float().sort(1,descending=True)[-1].to(device = z.device) mask_ex_idx = mask_ex.float().sort(1,descending=True)[-1].to(device = z.device) masked_z = torch.gather(z, 1, mask_nz_idx[:,:lenz_out,None].repeat([1,1,c])) masked_ez = torch.gather(event_z, 1, mask_ez_idx[:,:lenz_out,None].repeat([1,1,c])) masked_x = torch.gather(x, 1, mask_nx_idx[:,:lenx_out,None].repeat([1,1,c])) masked_ex = torch.gather(event_x, 1, mask_ex_idx[:,:lenx_out,None].repeat([1,1,c])) return masked_z, masked_ez, masked_x, masked_ex,{'x1':mask_nx_idx[:,:lenx_out],'x0':mask_nx_idx[:,lenx_out:], 'ex1':mask_ex_idx[:,:lenx_out],'ex0':mask_ex_idx[:,lenx_out:], } def forward_features(self, z, x, event_z, event_x, mask_z=None, mask_x=None, ce_template_mask=None, ce_keep_rate=None, return_last_attn=False,Track=False ): B, H, W = x.shape[0], x.shape[2], x.shape[3] # print('shape of event_z before projection:{}, event_x:{}'.format(event_z.shape, event_x.shape)) event_z = self.pos_embed_event(event_z) # [:,:,:,:1000] event_x = self.pos_embed_event(event_x) # B 768 1024 x = self.patch_embed(x) z = self.patch_embed(z) # print('shape of event_z:{}, event_x:{}, x:{}, z:{}'.format(event_z.shape,event_x.shape,x.shape,z.shape )) event_z += self.pos_embed_z event_x += self.pos_embed_x z += self.pos_embed_z x += self.pos_embed_x # attention mask handling # B, H, W if mask_z is not None and mask_x is not None: mask_z = F.interpolate(mask_z[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_z = mask_z.flatten(1).unsqueeze(-1) mask_x = F.interpolate(mask_x[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_x = mask_x.flatten(1).unsqueeze(-1) mask_x = combine_tokens(mask_z, mask_x, mode=self.cat_mode) mask_x = mask_x.squeeze(-1) if self.add_cls_token: cls_tokens = self.cls_token.expand(B, -1, -1) cls_tokens = cls_tokens + self.cls_pos_embed if self.add_sep_seg: x += self.search_segment_pos_embed z += self.template_segment_pos_embed if Track == False: z, event_z, x, event_x, token_idx = self.masking_fea(z, event_z, x, event_x, ratio=0.9) x = combine_tokens(z, event_z, x, event_x, mode=self.cat_mode) # 64+64+256+256=640 # x = combine_tokens(z, x, event_z, event_x, mode=self.cat_mode) # 64+64+256+256=640 if self.add_cls_token: x = torch.cat([cls_tokens, x], dim=1) x = self.pos_drop(x) # lens_z = self.pos_embed_z.shape[1] # lens_x = self.pos_embed_x.shape[1] lens_z = z.shape[1] lens_x = x.shape[1] global_index_t = torch.linspace(0, lens_z - 1, lens_z).to(x.device) global_index_t = global_index_t.repeat(B, 1) global_index_s = torch.linspace(0, lens_x - 1, lens_x).to(x.device) global_index_s = global_index_s.repeat(B, 1) removed_indexes_s = [] out_attn = [] for i, blk in enumerate(self.blocks): # out_global_s.append(global_index_s) # out_global_t.append(global_index_t) x, global_index_t, global_index_s, removed_index_s, attn = blk(x, global_index_t, global_index_s, mask_x, ce_template_mask, ce_keep_rate) if self.ce_loc is not None and i in self.ce_loc: removed_indexes_s.append(removed_index_s) out_attn.append(attn) # print('shape of attn:{}, lens_z:{}, lens_x:{}'.format(attn.shape, lens_z, lens_x)) out_attn_idx = random.choice(np.arange(len(out_attn))) out_attn = out_attn[out_attn_idx] x = self.norm(x) lens_x_new = global_index_s.shape[1] lens_z_new = global_index_t.shape[1] z = x[:, :lens_z_new*2] x = x[:, lens_z_new*2:] if Track == False: idx1 = token_idx['x1'] idx0 = token_idx['x0'] idex1 = token_idx['ex1'] idex0 = token_idx['ex0'] ex = x[:,idex1.shape[1]:] x = x[:,:idex1.shape[1]] # if removed_indexes_s and removed_indexes_s[0] is not None: # removed_indexes_cat = torch.cat(removed_indexes_s, dim=1) pruned_lens_x = idx0.shape[1] pad_x = torch.zeros([B, pruned_lens_x, x.shape[2]], device=x.device) x = torch.cat([x, pad_x], dim=1) index_all = torch.cat([idx1, idx0], dim=1) # recover original token order C = x.shape[-1] x = torch.zeros_like(x).scatter_(dim=1, index=index_all.unsqueeze(-1).expand(B, -1, C).to(torch.int64), src=x) ex = torch.cat([ex, pad_x], dim=1) index_all = torch.cat([idex1, idex0], dim=1) # recover original token order C = ex.shape[-1] ex = torch.zeros_like(ex).scatter_(dim=1, index=index_all.unsqueeze(-1).expand(B, -1, C).to(torch.int64), src=ex) x = torch.cat([x,ex],dim=1) x = recover_tokens(x, lens_z_new, lens_x, mode=self.cat_mode) event_x = x[:, lens_x:] # RGB head x = x[:, :lens_x] # RGB head x = torch.cat([event_x, x], dim=1) aux_dict = { # "attn": attn, "attn": out_attn, "removed_indexes_s": removed_indexes_s, # used for visualization } return x, aux_dict def forward(self, z, x, event_z, event_x, ce_template_mask=None, ce_keep_rate=None, tnc_keep_rate=None, return_last_attn=False,Track=False): x, aux_dict = self.forward_features(z, x, event_z, event_x, ce_template_mask=ce_template_mask, ce_keep_rate=ce_keep_rate,Track=Track) return x, aux_dict def _create_vision_transformer(pretrained=False, **kwargs): model = VisionTransformerCE(**kwargs) if pretrained: if 'npz' in pretrained: model.load_pretrained(pretrained, prefix='') else: checkpoint = torch.load(pretrained, map_location="cpu") missing_keys, unexpected_keys = model.load_state_dict(checkpoint["model"], strict=False) print('Load pretrained model from: ' + pretrained) return model def vit_base_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model def vit_large_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model 和 ④ # 将 4输入分开,构建新的相同模态结合的2输入,2分支 import math import logging from functools import partial from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import to_2tuple from lib.models.layers.patch_embed import PatchEmbed, PatchEmbed_event, xcorr_depthwise from .utils import combine_tokens, recover_tokens from .vit import VisionTransformer from ..layers.attn_blocks import CEBlock from .new_counter_guide import Counter_Guide # from .ad_counter_guide import Counter_Guide_Enhanced from .ad_counter_guide_downdim import Counter_Guide_Enhanced _logger = logging.getLogger(__name__) class VisionTransformerCE(VisionTransformer): """ Vision Transformer with candidate elimination (CE) module A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, act_layer=None, weight_init='', ce_loc=None, ce_keep_ratio=None): super().__init__() if isinstance(img_size, tuple): self.img_size = img_size else: self.img_size = to_2tuple(img_size) self.patch_size = patch_size self.in_chans = in_chans self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_tokens = 2 if distilled else 1 norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) act_layer = act_layer or nn.GELU self.patch_embed = embed_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) self.pos_embed_event = PatchEmbed_event(in_chans=32, embed_dim=768, kernel_size=4, stride=4) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule blocks = [] ce_index = 0 self.ce_loc = ce_loc for i in range(depth): ce_keep_ratio_i = 1.0 if ce_loc is not None and i in ce_loc: ce_keep_ratio_i = ce_keep_ratio[ce_index] ce_index += 1 blocks.append( CEBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, keep_ratio_search=ce_keep_ratio_i) ) self.blocks = nn.Sequential(*blocks) self.norm = norm_layer(embed_dim) self.init_weights(weight_init) # 添加交互模块counter_guide self.counter_guide = Counter_Guide_Enhanced(768, 768) def forward_features(self, z, x, event_z, event_x, mask_z=None, mask_x=None, ce_template_mask=None, ce_keep_rate=None, return_last_attn=False ): # 分支1 处理流程 B, H, W = x.shape[0], x.shape[2], x.shape[3] x = self.patch_embed(x) z = self.patch_embed(z) z += self.pos_embed_z x += self.pos_embed_x if mask_z is not None and mask_x is not None: mask_z = F.interpolate(mask_z[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_z = mask_z.flatten(1).unsqueeze(-1) mask_x = F.interpolate(mask_x[None].float(), scale_factor=1. / self.patch_size).to(torch.bool)[0] mask_x = mask_x.flatten(1).unsqueeze(-1) mask_x = combine_tokens(mask_z, mask_x, mode=self.cat_mode) mask_x = mask_x.squeeze(-1) if self.add_cls_token: cls_tokens = self.cls_token.expand(B, -1, -1) cls_tokens = cls_tokens + self.cls_pos_embed if self.add_sep_seg: x += self.search_segment_pos_embed z += self.template_segment_pos_embed x = combine_tokens(z, x, mode=self.cat_mode) if self.add_cls_token: x = torch.cat([cls_tokens, x], dim=1) x = self.pos_drop(x) lens_z = self.pos_embed_z.shape[1] lens_x = self.pos_embed_x.shape[1] global_index_t = torch.linspace(0, lens_z - 1, lens_z).to(x.device) global_index_t = global_index_t.repeat(B, 1) global_index_s = torch.linspace(0, lens_x - 1, lens_x).to(x.device) global_index_s = global_index_s.repeat(B, 1) removed_indexes_s = [] # # 分支2 处理流程 event_x = self.pos_embed_event(event_x) event_z = self.pos_embed_event(event_z) event_x += self.pos_embed_x event_z += self.pos_embed_z event_x = combine_tokens(event_z, event_x, mode=self.cat_mode) if self.add_cls_token: event_x = torch.cat([cls_tokens, event_x], dim=1) lens_z = self.pos_embed_z.shape[1] lens_x = self.pos_embed_x.shape[1] global_index_t1 = torch.linspace(0, lens_z - 1, lens_z).to(event_x.device) global_index_t1 = global_index_t1.repeat(B, 1) global_index_s1 = torch.linspace(0, lens_x - 1, lens_x).to(event_x.device) global_index_s1 = global_index_s1.repeat(B, 1) removed_indexes_s1 = [] for i, blk in enumerate(self.blocks): # 第一个分支处理 x, global_index_t, global_index_s, removed_index_s, attn = blk(x, global_index_t, global_index_s, mask_x, ce_template_mask, ce_keep_rate) # 第二个分支处理 event_x, global_index_t1, global_index_s1, removed_index_s1, attn = blk(event_x, global_index_t1, global_index_s1, mask_x, ce_template_mask, ce_keep_rate) if self.ce_loc is not None and i in self.ce_loc: removed_indexes_s.append(removed_index_s) removed_indexes_s1.append(removed_index_s1) # 在第1层和第2层增加counter_guide模块,验证早期融合效果 if i == 0 : enhanced_x, enhanced_event_x = self.counter_guide(x, event_x) # 将增强后的特征与原特征相加 x = x + enhanced_x event_x = event_x + enhanced_event_x # 应用LayerNorm归一化处理 x = self.norm(x) event_x = self.norm(event_x) x_cat = torch.cat([event_x,x], dim=1) x = x_cat aux_dict = { "attn": attn, "removed_indexes_s": removed_indexes_s, # used for visualization } return x, aux_dict def forward(self, z, x, event_z, event_x, ce_template_mask=None, ce_keep_rate=None, tnc_keep_rate=None, return_last_attn=False): x, aux_dict = self.forward_features(z, x, event_z, event_x, ce_template_mask=ce_template_mask, ce_keep_rate=ce_keep_rate,) return x, aux_dict def _create_vision_transformer(pretrained=False, **kwargs): model = VisionTransformerCE(**kwargs) if pretrained: if 'npz' in pretrained: model.load_pretrained(pretrained, prefix='') else: checkpoint = torch.load(pretrained, map_location="cpu") missing_keys, unexpected_keys = model.load_state_dict(checkpoint["model"], strict=False) print('Load pretrained model from: ' + pretrained) return model def vit_base_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model def vit_large_patch16_224_ce(pretrained=False, **kwargs): """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929). """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, **kwargs) model = _create_vision_transformer(pretrained=pretrained, **model_kwargs) return model
answer:在代码段③和④中,均展示了在视觉变换器(Vision Transformer)的基础上增加了候选消除(CE,Candidate Elimination)模块的高级模型实现。尽管它们的核心目的相同,即在传统的视觉变换器架构中融入了额外的处理步骤以提升性能,但两段代码在细节实现上存在一些关键的差异: 1. **交互模块的引入:** 在代码段④中,有一个明显的新增模块 `Counter_Guide` 或 `Counter_Guide_Enhanced`,这是一个被添加到模型中的交互模块,旨在增强不同组件之间的特征交互。这种交互可能有助于模型更好地融合来自不同输入(如事件图像和常规图像)的信息,以提升处理和识别性能。相较之下,代码段③中没有此类交互模块的使用,而是通过直接处理及组合功能来进行信息融合。 2. **处理分支的差异:** 代码段④具体展示了如何将输入分为两个分支,每个分支处理一种不同类型的输入(标准图像和事件图像),然后在特定层级引入交互模块以增强特征。这种设计考虑了不同输入之间的交互可能性,意图是通过这种早期和中期交互来提升模型的整体性能。而在代码段③中,处理似乎更加直接,没有明显区分处理不同输入类型的特定分支。 3. **通用结构和方法:** 两段代码都在 `VisionTransformer` 类的基础上进行扩展,增加了对候选消除(CE)策略的支持,并继承了一些共同的方法和属性,例如初始化权重的方法 `init_weights`,前向传播的处理 `forward_features` 和 `forward`,以及创建模型实例的辅助函数 `_create_vision_transformer`,`vit_base_patch16_224_ce` 和 `vit_large_patch16_224_ce`。这些共同点表明,尽管两者在某些方面采用了不同的方法,但它们的基本架构和目标是一致的。 4. **模型参数和配置:** 两段代码均提供了配置模型参数(如图像大小、块的深度、嵌入维度等)的灵活性,允许调用方根据具体需求进行调整。此外,它们均支持加载预训练模型,以利用在大规模数据集上预训练的特征提取能力。 总的来说,代码段④通过添加交互模块和处理分支的办法,对在视觉变换器框架上实现候选消除策略的方法进行了扩展和增强,从而可能在处理多模态输入(如事件数据和标准图像数据)时提供了更好的性能。而代码段③提供了一个更为直接的实现方法,没有显式地引入这种类型的交互模块。两种方法各有优点,选择哪种取决于特定的应用场景和性能需求。
question:那么综上,代码①对应于代码④ ,代码②对应于代码③ ,那么描述一下对饮关系
answer:从您提供的描述来看,代码片段①和代码片段④之间,以及代码片段②和代码片段③之间,存在对应关系。下面是根据这些关系进行的详细对比: # 代码片段①与代码片段④的对应关系 - **高级交互模块:** 代码片段④引入了一个名为 `Counter_Guide` 或 `Counter_Guide_Enhanced` 的交互模块,这一设计旨在增强模型中不同部分(如处理常规图像和事件图像的分支)之间的信息交互。这种交互模块的加入表明代码片段④着重于提升不同信号之间的合作和融合能力。代码片段①中可能隐含着相似的设计理念,即增加模型对输入数据不同方面的处理能力,虽然在①中没有直接提到交互模块,但存在针对性的特征处理步骤或者特别的设计以实现类似的目的。 - **特定处理流程与分支设计:** 代码片段④具体说明了如何将输入数据分为两个处理分支,每个分支专注于处理一种类型的数据(如标准图像与事件图像),并在一定阶段引入了交互模块来增强特征。这种方法突出了早期和中期交互在模型性能提升中的重要性。代码片段①可能在不直接说明的情况下采取了类似的策略,通过特定的设计和处理步骤,优化不同类型数据的处理和融合。 # 代码片段②与代码片段③的对应关系 - **直接处理与优化:** 代码片段③相较于代码片段④,采取了更为直接的数据处理方法,在该方法中没有明确划分处理不同数据类型的特定分支或引入显式的交互模块。这种设计思路可能更注重于模型的直观性和简洁性,而不是在模型中显式地建立复杂的交互。代码片段②很可能也采用了类似的设计哲学,通过简化模型结构和处理步骤来提升性能,而不依赖于额外的交互机制。 - **模型的可扩展性与配置:** 尽管代码片段③和代码片段②采取了相对简化的方法,它们依然提供了灵活的模型配置选项。这些选项允许模型根据不同的应用场景进行适配和优化,同时保持了加载预训练权重等实用功能。这表明了即便是在简化设计的情况下,模型的可用性和适应性也是重要考虑因素。 总的来说,代码片段①与代码片段④之间、代码片段②与代码片段③之间的对应关系揭示了在设计高级视觉变换器模型时可能采取的两种不同策略:一种是通过引入交互模块和明确的处理分支来增强模型的复杂性和功能性;另一种则着重于模型的简洁性和直接性,通过直观的数据处理和优化来提升性能。选择哪种策略取决于特定的应用需求、性能目标以及模型的维护和拓展方向。
question:代码③对应的是:from . import BaseActor from lib.utils.misc import NestedTensor from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy import torch from lib.utils.merge import merge_template_search from ...utils.heapmap_utils import generate_heatmap from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate class CEUTrackActor(BaseActor): """ Actor for training CEUTrack models """ def __init__(self, net, objective, loss_weight, settings, cfg=None): super().__init__(net, objective) self.loss_weight = loss_weight self.settings = settings self.bs = self.settings.batchsize # batch size self.cfg = cfg def __call__(self, data): """ args: data - The input data, should contain the fields 'template', 'search', 'gt_bbox'. template_images: (N_t, batch, 3, H, W) search_images: (N_s, batch, 3, H, W) returns: loss - the training loss status - dict containing detailed losses """ # forward pass out_dict = self.forward_pass(data) # compute losses loss, status = self.compute_losses(out_dict, data) return loss, status def forward_pass(self, data): # currently only support 1 template and 1 search region assert len(data['template_images']) == 1 assert len(data['search_images']) == 1 assert len(data['template_event']) == 1 assert len(data['search_event']) == 1 template_list = [] for i in range(self.settings.num_template): template_img_i = data['template_images'][i].view(-1, *data['template_images'].shape[2:]) # (batch, 3, 128, 128) # template_att_i = data['template_att'][i].view(-1, *data['template_att'].shape[2:]) # (batch, 128, 128) template_list.append(template_img_i) search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) # (batch, 3, 320, 320) # search_att = data['search_att'][0].view(-1, *data['search_att'].shape[2:]) # (batch, 320, 320) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) box_mask_z = None ce_keep_rate = None if self.cfg.MODEL.BACKBONE.CE_LOC: box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device, data['template_anno'][0]) ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch, total_epochs=ce_start_epoch + ce_warm_epoch, ITERS_PER_EPOCH=1, base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0]) if len(template_list) == 1: template_list = template_list[0] out_dict = self.net(template=template_list, search=search_img, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) return out_dict def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), "IoU": mean_iou.item()} return loss, status else: return loss 代码④ 对应的是 from . import BaseActor from lib.utils.misc import NestedTensor from lib.utils.box_ops import box_cxcywh_to_xyxy, box_xywh_to_xyxy import torch from lib.utils.merge import merge_template_search from ...utils.heapmap_utils import generate_heatmap from ...utils.ce_utils import generate_mask_cond, adjust_keep_rate class CEUTrackActor(BaseActor): """ Actor for training CEUTrack models """ def __init__(self, net, objective, loss_weight, settings, cfg=None): super().__init__(net, objective) self.loss_weight = loss_weight self.settings = settings self.bs = self.settings.batchsize # batch size self.cfg = cfg def __call__(self, data): """ args: data - The input data, should contain the fields 'template', 'search', 'gt_bbox'. template_images: (N_t, batch, 3, H, W) search_images: (N_s, batch, 3, H, W) returns: loss - the training loss status - dict containing detailed losses """ # forward pass out_dict = self.forward_pass(data) # compute losses loss, status = self.compute_losses(out_dict, data) return loss, status def forward_pass(self, data): # currently only support 1 template and 1 search region assert len(data['template_images']) == 1 assert len(data['search_images']) == 1 assert len(data['template_event']) == 1 assert len(data['search_event']) == 1 template_list = [] for i in range(self.settings.num_template): template_img_i = data['template_images'][i].view(-1, *data['template_images'].shape[2:]) # (batch, 3, 128, 128) # template_att_i = data['template_att'][i].view(-1, *data['template_att'].shape[2:]) # (batch, 128, 128) template_list.append(template_img_i) search_img = data['search_images'][0].view(-1, *data['search_images'].shape[2:]) # (batch, 3, 320, 320) # search_att = data['search_att'][0].view(-1, *data['search_att'].shape[2:]) # (batch, 320, 320) template_event = data['template_event'][0].view(-1, *data['template_event'].shape[2:]) search_event = data['search_event'][0].view(-1, *data['search_event'].shape[2:]) box_mask_z = None ce_keep_rate = None if self.cfg.MODEL.BACKBONE.CE_LOC: box_mask_z = generate_mask_cond(self.cfg, template_list[0].shape[0], template_list[0].device, data['template_anno'][0]) ce_start_epoch = self.cfg.TRAIN.CE_START_EPOCH ce_warm_epoch = self.cfg.TRAIN.CE_WARM_EPOCH ce_keep_rate = adjust_keep_rate(data['epoch'], warmup_epochs=ce_start_epoch, total_epochs=ce_start_epoch + ce_warm_epoch, ITERS_PER_EPOCH=1, base_keep_rate=self.cfg.MODEL.BACKBONE.CE_KEEP_RATIO[0]) if len(template_list) == 1: template_list = template_list[0] out_dict = self.net(template=template_list, search=search_img, event_template=template_event, event_search=search_event, ce_template_mask=box_mask_z, ce_keep_rate=ce_keep_rate, return_last_attn=False) return out_dict def compute_losses(self, pred_dict, gt_dict, return_status=True): # gt gaussian map gt_bbox = gt_dict['search_anno'][-1] # (Ns, batch, 4) (x1,y1,w,h) -> (batch, 4) gt_gaussian_maps = generate_heatmap(gt_dict['search_anno'], self.cfg.DATA.SEARCH.SIZE, self.cfg.MODEL.BACKBONE.STRIDE) gt_gaussian_maps = gt_gaussian_maps[-1].unsqueeze(1) # Get boxes pred_boxes = pred_dict['pred_boxes'] if torch.isnan(pred_boxes).any(): raise ValueError("Network outputs is NAN! Stop Training") num_queries = pred_boxes.size(1) pred_boxes_vec = box_cxcywh_to_xyxy(pred_boxes).view(-1, 4) # (B,N,4) --> (BN,4) (x1,y1,x2,y2) gt_boxes_vec = box_xywh_to_xyxy(gt_bbox)[:, None, :].repeat((1, num_queries, 1)).view(-1, 4).clamp(min=0.0, max=1.0) # (B,4) --> (B,1,4) --> (B,N,4) # compute giou and iou try: giou_loss, iou = self.objective['giou'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) except: giou_loss, iou = torch.tensor(0.0).cuda(), torch.tensor(0.0).cuda() # compute l1 loss l1_loss = self.objective['l1'](pred_boxes_vec, gt_boxes_vec) # (BN,4) (BN,4) # compute location loss if 'score_map' in pred_dict: location_loss = self.objective['focal'](pred_dict['score_map'], gt_gaussian_maps) else: location_loss = torch.tensor(0.0, device=l1_loss.device) rank_loss = self.loss_rank(pred_dict,gt_dict['search_anno'], gt_dict['template_anno']) # weighted sum loss = self.loss_weight['giou'] * giou_loss + self.loss_weight['l1'] * l1_loss + self.loss_weight['focal'] * location_loss + rank_loss*1.2 if return_status: # status for log mean_iou = iou.detach().mean() status = {"Loss/total": loss.item(), "Loss/giou": giou_loss.item(), "Loss/l1": l1_loss.item(), "Loss/location": location_loss.item(), "IoU": mean_iou.item()} return loss, status else: return loss def _random_permute(self,matrix): # matrix = random.choice(matrix) b, c, h, w = matrix.shape idx = [ torch.randperm(c).to(matrix.device) for i in range(b)] idx = torch.stack(idx, dim=0)[:, :, None, None].repeat([1,1,h,w]) # idx = torch.randperm(c)[None,:,None,None].repeat([b,1,h,w]).to(matrix.device) matrix01 = torch.gather(matrix, 1, idx) return matrix01 def crop_flag(self, flag, global_index_s, global_index_t,H1 = 64, H2 = 256): B,Ls = global_index_s.shape B, Lt = global_index_t.shape B,C,L1,L2 = flag.shape flag_t = flag[:,:,:H1,:] flag_s = flag[:,:,H1:,:] flag_t = torch.gather(flag_t,2,global_index_t[:,None,:,None].repeat([1,C,1,L2]).long()) flag_s = torch.gather(flag_s,2,global_index_s[:,None,:,None].repeat([1,C,1,L2]).long()) flag = torch.cat([flag_t, flag_s], dim = 2) flag_t = flag[:,:,:,:H1] flag_s = flag[:,:,:,H1:] flag_t = torch.gather(flag_t,3,global_index_t[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag_s = torch.gather(flag_s,3,global_index_s[:,None,None,:].repeat([1,C,int(Ls+Lt),1]).long()) flag = torch.cat([flag_t, flag_s], dim = 3) B, C, L11, L12 = flag.shape try: assert(L11 == int(Lt + Ls)) assert(L12 == int(Lt + Ls)) except: print('L11:{}, L12:{}, L1:{}, L2:{}'.format(L11, L12, L1, L2)) return flag def crop_fusion(self, flag, attn, global_index_s, global_index_t,H1 = 64, H2 = 256 ): flag = self.crop_flag(flag=flag, global_index_s=global_index_s, global_index_t=global_index_t) B,C,L1,L2 = flag.shape Ba, Ca, La, La2 = attn.shape _,idx1 = flag.mean(dim=3,keepdim=False).sort(dim=2,descending=True) # print('shape of flag:{}, idx1:{}'.format(flag.shape, idx1[:,:,:32,None].repeat([1,Ca,1,L2]).shape)) flag = torch.gather(flag,2,idx1[:,:,:32,None].repeat([1,C,1,L2]).long()) attn = torch.gather(attn,2,idx1[:,:,:32,None].repeat([1,Ca,1,L2]).long()) _,idx2 = flag.mean(dim=2,keepdim=False).sort(dim=2,descending=True) flag = torch.gather(flag,3,idx2[:,:,None,:32].repeat([1,C,32,1]).long()) attn = torch.gather(attn,3,idx2[:,:,None,:32].repeat([1,Ca,32,1]).long()) return attn * flag def loss_rank(self, outputs, targetsi, temp_annoi=None): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ attn = outputs['attn'] # print('attn shape:{}'.format(attn.shape)) attn1 = torch.cat([attn[:,:,114:344,57:114], attn[:,:,114:344,344:]],dim=3) attn1 = attn1.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) attn2 = torch.cat([attn[:,:,344:,:57], attn[:,:,344:,114:344]],dim=3) attn2 = attn2.mean(dim=0, keepdim=True).mean(dim=1, keepdim=True) # print('attn1 shape:{},attn2 shape:{}, attn:{}'.format(attn1.shape,attn2.shape,attn.shape)) # attn = self._random_permute(attn) # attn = attn[:,:,:,:] # B1, C1, H1, W1 = attn.shape # global_index_s = outputs['out_global_s'] # global_index_t = outputs['out_global_t'] # try: # assert((global_index_s.shape[1] + global_index_t.shape[1])== int(H1/2)) # except: # print('Falut,shape of attn:{}, s:{}, t:{}'.format(attn.shape,global_index_s.shape, global_index_t.shape )) # H1 = int(64) # H2 = int(256) # l_t = int(math.sqrt(64)) # l_s = int(math.sqrt(256)) # temp_anno = temp_annoi[0,:,:] # targets = targetsi[0,:,:] # r_s = torch.arange(l_s).to(temp_anno.device) # r_t = torch.arange(l_t).to(temp_anno.device) # r_t = r_t[None,:].repeat([B1,1]) # cx, cy, w, h = temp_anno[:,0:1], temp_anno[:,1:2], temp_anno[:,2:3], temp_anno[:,3:4] # cx *= l_t # cy *= l_t # w *= l_t # h *= l_t # flagx_01 = r_t >= cx - w/2 # flagx_02 = r_t <= cx + w/2 # flagy_02 = r_t >= cy - h/2 # flagy_01 = r_t <= cy + h/2 # flagx = flagx_01.float()*flagx_02.float() # flagy = flagy_01.float()*flagy_02.float() # flagx = flagx[:,None,:].repeat([1,l_t,1]) # flagy = flagy[:,:,None].repeat([1,1,l_t]) # flag = flagx*flagy # flagt = flag.reshape([B1, H1]) # cx, cy, w, h = targets[:,0:1], targets[:,1:2], targets[:,2:3], targets[:,3:4] # cx *= l_s # cy *= l_s # w *= l_s # h *= l_s # flagx_01 = r_s >= cx - w/2 # flagx_02 = r_s <= cx + w/2 # flagy_02 = r_s >= cy - h/2 # flagy_01 = r_s <= cy + h/2 # flagx = flagx_01.float()*flagx_02.float() # flagy = flagy_01.float()*flagy_02.float() # flagx = flagx[:,None,:].repeat([1,l_s,1]) # flagy = flagy[:,:,None].repeat([1,1,l_s]) # flag = flagx*flagy # flags = flag.reshape([B1, H2]) # flag = torch.cat([flagt, flags], dim=1) # flag_total = flag[:,:,None].repeat([1,1,int(H1+H2)]) * flag[:,None,:].repeat([1,int(H1+H2),1]) # attn1 = self.crop_fusion(flag_total[:,None,:,:], attn, global_index_s, global_index_t) attn = torch.cat([attn1, attn2],dim=1) B, C, H, W = attn.shape # _,s1,_ = torch.svd(attn1.reshape([B*C, H, W])) _,s1,_ = torch.svd(attn.reshape([B*C, H, W])) s01 = torch.abs(s1 - 1) return torch.mean(s01),那么分析文件之间的对应关系
answer:从您提供的描述中,我们可以看出代码③和代码④实际上是相同的代码段。因此,我们将这一情形视为一种特殊比较,即自反性的对比,而不是将两个不同的代码段进行比较。在这种情形下,我们可以探讨代码内部结构的一致性、重复性以及可能的重构机会。 1. **一致性与重复性:** 由于代码③和代码④实际上是相同的代码,这自然意味着它们之间具有完美的一致性。在实际项目开发中,代码的重复是一种常见现象,特别是在大型项目或复杂系统中,不同部分的开发者可能会采用相同的模式来解决类似的问题。重复的代码可能会增加维护成本,因为任何修复或改进都需要在多个地方同时进行。 2. **重构机会:** 考虑到代码的完全一致性,这为重构提供了一个明显的机会。重构旨在改进代码的结构,而不改变其外在行为。对于重复的代码,一个常见的重构方法是采用函数或类的提取(Extract Method or Extract Class): - 如果重复代码在功能上是独立的,可以将其提取为一个单独的函数或方法,并从原来的位置调用新的函数或方法。 - 如果重复代码与特定的数据以及操作这些数据的方法密切相关,可能更适合提取为一个类。这样可以将数据和方法封装起来,提高代码的模块性和可重用性。 3. **维护性与可扩展性:** 通过减少代码冗余,我们可以提高代码的维护性和可扩展性。当需要修复错误或添加新功能时,较少的重复代码意味着更少的修改点,从而降低了引入新错误的风险,并减少了测试工作的负担。此外,更加模块化的代码结构使得未来的扩展变得更加容易。 综上所述,虽然代码③与代码④之间的"对比"实际上是在分析同一代码段的不同副本,但这种分析揭示了代码复用、重构和维护性这几个软件开发中的核心议题。正确处理代码中的重复和冗余部分,可以显著提升项目的健壮性和未来的发展潜力。